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5 Probability Foundations

Constructing the mathematical foundations of probability theory
has proven to be a long-lasting process of trial and error. The
approach consisting of defining probabilities as relative frequencies
in cases of repeatable experiments leads to an unsatisfactory theory.
The frequency view of probability has a long history that goes
back to Aristotle. It was not until 1933 that the great Russian
mathematician A. N. Kolmogorov (1903-1987) laid a satisfactory
mathematical foundation of probability theory. He did this by
taking a number of axioms as his starting point, as had been done
in other fields of mathematics. [21], p 223]

We will try to avoid several technical detaild™][™] in this class.
Therefore, the definition given below is not the “complete” defini-
tion. Some parts are modified or omitted to make the definition
easier to understand.

14To study formal definition of probability, we start with the probability space (9, A, P).
Let  be an arbitrary space or set of points w. Recall (from Definition that, viewed
probabilistically, a subset of ) is an event and an element w of Q2 is a sample point. Each
event is a collection of outcomes which are elements of the sample space ().

The theory of probability focuses on collections of events, called event o-algebras, typ-
ically denoted by A (or F), that contain all the events of interest (regarding the random
experiment &) to us, and are such that we have knowledge of their likelihood of occurrence.
The probability P itself is defined as a number in the range [0, 1] associated with each event
in A.

15The class 2% of all subsets can be too large for us to define probability measures with
consistency, across all member of the class. (There is no problem when € is countable.)
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Definition 5.1. Kolmogorov’s Axioms for Probability [12]:
A probability measurd Y is a real-valued set function’| that sat-
isfies

P1 Nonnegativity:

P2 Unit normalization:
P(Q)=1.

P3 Countable additivity or o-additivity: For every countable
sequence (A,),_, of disjoint events,

n=1 n=1

e The number P (A) is called the probability of the event A

From the three axiomﬂ, we can derive many more properties
of probability measure. These properties are useful for calculating
probabilities.

Definition 5.2. Some definitions involving events whose proba-
bility = 1.

e The entire sample space 2 is called the sure event or the
certain event.

e If an event A satisfies P(A) = 1, we say that A is an almost-
sure event.

e A support of P is any set A for which P (A) = 1.

16 Technically, probability measure is defined on a o-algebra A of Q. The triple (2, A, P) is
called a probability measure space, or simply a probability space

ITA real-valued set function is a function the maps sets to real numbers.

18Remark: The axioms do not determine probabilities; the probabilities are assigned based
on our knowledge of the system under study. (For example, one approach is to base probability
assignments on the simple concept of equally likely outcomes.) The axioms enable us to easily
calculate the probabilities of some events from knowledge of the probabilities of other events.

o6



Example 5.3. “Direct” construction of a probability measure:
Consider a sample space 2 = {1, 2, 3}.

5.4. P(0) = 0.

5.5. Finite additivity["} If A;, ..., A, are disjoint events, then

(08 -0

Special case when n = 2: Addition rule (Additivity)
If ANB =, then P(AUB) = P(A)+ P(B). (5)

191t is not possible to go backwards and use finite additivity to derive countable additivity
(P3).
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5.6. The probability of a countable event equals the sum of the
probabilities of the outcomes in the event.

(a) In particular, if A is countably infinite, e.g. A = {ay,as,...},
then

oo

P(4) =3 P({au}).

n=1
(b) Similarly, if A is finite, e.g. A = {al, as, ..., a|A‘}, then

Al

P(A) =) P({a.}).
n=1
e This greatly Simpliﬁeﬂ construction of probability measure.

Remark: Note again that the set A under consideration here is
finite or countably infinite. You cannot apply the properties above
to uncountable set 1]

20Recall that a probability measure P is a set function that assigns number (probability) to
all set (event) in A. When ) is countable (finite or countably infinite), we may let A = 2 =
the power set of the sample space. In other words, in this situation, it is possible to assign
probability value to all subsets of (2.

To define P, it seems that we need to specify a large number of values. Recall that to
define a function g(z) you usually specify (in words or as a formula) the value of g(z) at all
possible x in the domain of g. The same task must be done here because we have a function
that maps sets in A to real numbers (or, more specifically, the interval [0, 1]). It seems that
we will need to explicitly specify P(A) for each set A in A. Fortunately, implies that we
only need to define P for all the singletons (when  is countable).

2In Section |10, we will start talking about (absolutely) continuous random variables. In
such setting, we have P({a}) = 0 for any «. However, it is possible to have an uncountable
set A with P(A) > 0. This does not contradict the properties that we discussed in IfA
is finite or countably infinite, we can still write

P(A)=> P({a})=> 0=0.

acA a€cA

For event A that is uncountable, the properties in are not enough to evaluate P(A).
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Example 5.7. A random experiment can result in one of the out-
comes {a, b, c,d} with probabilities 0.1, 0.3, 0.5, and 0.1, respec-
tively. Let A denote the event {a,b}, B the event {b,c,d}, and C
the event {d}.

e P(ANB) =
e P(ANC) =
5.8. Monotonicity: If A C B, then P (A) < P (B)

Example 5.9. Let A be the event to roll a 6 and B the event
to roll an even number. Whenever A occurs, B must also occur.
However, B can occur without A occurring if you roll 2 or 4.

5.10. If A C B, then P(B\ A) = P(B) — P (A)

5.11. P(A) € [0,1].

5.12. P(AN B) cannot exceed P(A) and P(B). In other words,
“the composition of two events is always less probable than (or at
most equally probable to) each individual event.”
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Example 5.13 (Slides). Experiments by psychologists Kahneman
and Tversky.

Example 5.14. Let us consider Mrs. Boudreaux and Mrs. Thi-
bodeaux who are chatting over their fence when the new neighbor
walks by. He is a man in his sixties with shabby clothes and a
distinct smell of cheap whiskey. Mrs.B, who has seen him before,
tells Mrs. T that he is a former Louisiana state senator. Mrs. T
finds this very hard to believe. “Yes,” says Mrs.B, “he is a former
state senator who got into a scandal long ago, had to resign, and
started drinking.” “Oh,” says Mrs. T, “that sounds more likely.”
“No,” says Mrs. B, “I think you mean less likely.”

Strictly speaking, Mrs. B is right. Consider the following two
statements about the shabby man: “He is a former state senator”
and “He is a former state senator who got into a scandal long ago,
had to resign, and started drinking.” It is tempting to think that
the second is more likely because it gives a more exhaustive expla-
nation of the situation at hand. However, this reason is precisely
why it is a less likely statement. Note that whenever somebody
satisfies the second description, he must also satisfy the first but
not vice versa. Thus, the second statement has a lower probability
(from Mrs. T’s subjective point of view; Mrs. B of course knows
who the man is).

This example is a variant of examples presented in the book
Judgment under Uncertainty [11] by Economics Nobel laureate
Daniel Kahneman and co-authors Paul Slovic and Amos Tversky.
They show empirically how people often make similar mistakes
when they are asked to choose the most probable among a set of
statements. It certainly helps to know the rules of probability. A
more discomforting aspect is that the more you explain something
in detail, the more likely you are to be wrong. If you want to be
credible, be vague. [17, p 11-12]
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5.15. Complement Rule:
P(AY=1-P(A).

e “The probability that something does not occur can be com-

9

puted as one minus the probability that it does occur.’
e Named “probability’s Trick Number One” in [10]

5.16. Probability of a union (not necessarily disjoint):

P(AuB)=P(A)+ P(B)—- P(ANB)

e P(AUB) < P(A)+ P(B).

e Approximation: If P(A) > P(B) then we may approximate
P(AUB) by P(A).

Example 5.17 (Slides). Combining error probabilities from vari-
ous sources in DNA testing

Example 5.18. In his bestseller Innumeracy, John Allen Paulos
tells the story of how he once heard a local weatherman claim that
there was a 50% chance of rain on Saturday and a 50% chance of
rain on Sunday and thus a 100% chance of rain during the weekend.
Clearly absurd, but what is the error?

Answer: Faulty use of the addition rule (F])!

If we let A denote the event that it rains on Saturday and B
the event that it rains on Sunday, in order to use P(AU B) =
P(A)+ P(B), we must first confirm that A and B cannot occur at
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the same time (P(ANB) = 0). More generally, the formula that is
always holds regardless of whether P(AN B) = 0 is given by |5.16;

P(AUB)=P(A)+ P(B)— P(AN B).

The event “A N B” describes the case in which it rains both days.
To get the probability of rain over the weekend, we now add 50%
and 50%, which gives 100%, but we must then subtract the prob-
ability that it rains both days. Whatever this is, it is certainly
more than 0 so we end up with something less than 100%, just like
common sense tells us that we should.

You may wonder what the weatherman would have said if the
chances of rain had been 75% each day. [17, p 12]

5.19. Probability of a union of three events:

P(AUBUC)=P(A)+ P(B)+ P(C)
— P(ANB)—PANC)—-P(BNC)
+P(ANBNC)

5.20. Two bounds:

(a) Subadditivity or Boole’s Inequality: If Ay, ..., A, are
events, not necessarily disjoint, then

(a0

(b) o-subadditivity or countable subadditivity: If A;, A,
. is a sequence of measurable sets, not necessarily disjoint,

then
P <UAZ> < ZP(Ai)

e This formula is known as the union bound in engineer-
ing.
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5.21. If a (finite) collection {By, By, ..., B,} is a partition of €2,
then

P(A) = anp(,am B))

Similarly, if a (countable) collection { By, Bs,...} is a partition
of 2, then

P(A)=> P(ANB)
i=1
5.22. Connection to classical probability theory: Consider an
experiment with finite sample space 2 = {wy,wo, . ..,w,} in which
each outcome w; is equally likely. Note that n = |{)|.

We must have

P({wi}) = % vi.

Now, given any event ﬁnit@ event A, we can apply to get

PU=Y PUh =Y o ==

n
weA weA

We can then say that the probability theory we are working on
right now is an extension of the classical probability theory. When
the conditons/assumptions of classical probability theory are met,
then we get back the defining definition of classical classical prob-
ability. The extended part gives us ways to deal with situation
where assumptions of classical probability theory are not satisfied.

22Tn classical probability, the sample space is finite; therefore, any event is also finite.

63



6 Event-based Independence and Conditional
Probability

Example 6.1. Roll a dice. ..

4 4 4

(&

Figure 10: Conditional Probability Example: Sneak Peek
Example 6.2 (Slides). Diagnostic Tests.

6.1 Event-based Conditional Probability

Definition 6.3. Conditional Probability: The conditional prob-
ability P(A|B) of event A, given that event B # () occurred, is
given by

P(ANB)
P(A|B) = ——=.
e Some ways to say@ or express the conditional probability,

P(A|B), are:

o the “(conditional) probability of A, given B”
o the “(conditional) probability of A, knowing B”

o the “(conditional) probability of A happening, knowing
B has already occurred”

o the “(conditional) probability of A, given that B occurred”

o the “(conditional) probability of an event A under the
knowledge that the outcome will be in event B”

ZNote also that although the symbol P(A|B) itself is practical, it phrasing in words can be
so unwieldy that in practice, less formal descriptions are used. For example, we refer to “the
probability that a tested-positive person has the disease” instead of saying “the conditional
probability that a randomly chosen person has the disease given that the test for this person
returns positive result.”
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e Defined only when P(B) > 0.

o If P(B) =0, then it is illogical to speak of P(A|B); that
is P(A|B) is not defined.

6.4. Interpretation: It is sometimes useful to interpret P(A)
as our knowledge of the occurrence of event A before the exper-
iment takes place. Conditional probability?] P(A|B) is the up-
dated probability of the event A given that we now know that
B occurred (but we still do not know which particular outcome in
the set B did occur).

Definition 6.5. Sometimes, we refer to P(A) as
e a priori probability, or
e the prior probability of A, or
e the unconditional probability of A.

Example 6.6. Back to Example [6.1. Roll a dice. Let X be the
outcome.

O
e (o0 o
. AN \./ -
®
7
® o0 000
o (0@
COOIOORXD

Figure 11: Sneak Peek: A Revisit

%41n general, P(A) and P(A|B) are not the same. However, in the next section (Section
, we will consider the situation in which they are the same.

65



Example 6.7. In diagnostic tests Example [6.2], we learn whether
we have the disease from test result. Originally, before taking the
test, the probability of having the disease is 0.01%. Being tested
positive from the 99%-accurate test updates the probability of
having the disease to about 1%.

More specifically, let D be the event that the testee has the
disease and Tp be the event that the test returns positive result.

e Before taking the test, the probability of having the disease
is P(D) = 0.01%.

e Using 99%-accurate test means

P(Tp|D) = 0.99 and P(TS|D¢) = 0.99.

e Our calculation shows that P(D|Tp) = 0.01.

6.8. “Prelude” to the concept of “independence”:

If the occurrence of B does not give you more information about
A, then
P(A|B) = P(A) (7)

and we say that A and B are independent.

e Meaning: “learning that event B has occurred does not change
the probability that event A occurs.”

We will soon define “independence” in Section [6.2] Property
can be regarded as a “practical” definition for independence.
However, there are some “technical” issue§”| that we need to deal
with when we actually define independence.

6.9. When () is finite and all outcomes have equal probabilities,

P(ANB) |AnB|/|Q| |ANB|
P(B)  |Bl/I9l  |B

P(A|B) =

This formula can be regarded as the classical version of conditional
probability.

% Here, the statement assume P(B) > 0 because it considers P(A|B). The concept of
independence to be defined in Section will not rely directly on conditional probability and
therefore it will include the case where P(B) = 0.
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Exercise 6.10. Someone has rolled a fair dice twice. You know
that one of the rolls turned up a face value of six. What is the
probability that the other roll turned up a six as well?

Ans: ﬁ (not %) [21, Example 8.1, p. 244]

Example 6.11. Consider the following sequences of 1s and 0Os
which summarize the data obtained from 15 testees.

D: 011000011110101

TP: 10011000001 1011

The “D” row indicates whether each of the testees actually has the
disease under investigation. The “TP” row indicates whether each
of the testees is tested positive for the disease.

Numbers “1”7 and “0” correspond to “True” and “False”, re-
spectively.

Suppose we randomly pick a testee from this pool of 15 per-
sons. Let D be the event that this selected person actually has
the disease. Let Tp be the event that this selected person is tested
positive for the disease.

Find the following probabilities.

(a) P(D)
(b) P(D")
(¢) P(Tp)
(d) P(Tp)
(e) P(Tr|D)
(f) P(Tp|D?)
(&) P(Tp|D)
(h) P(Tp[De)
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6.12. Similar properties to the three probability axioms:
(a) Nonnegativity: P(A ) >0

(b) Unit normalization: P(2 )= 1.

In fact, for any event A such that B C A, we have P(A|B) =
1.

This implies
P(Q2|B) = P(B|B) = 1.

00
n=1

(c¢) Countable additivity: For every countable sequence (A,,)
of disjoint events,

f(On )-Sru

e In particular, if A; L Ao,
P(AUA )=PA )+P4 )
6.13. More Properties:
e P(A|IQ2) = P(A)
e P(A°|B)=1— P(A|B)

P(AN B|B) = P(A|B)
P (A, U As|B) = P(A|B) + P(As|B) — P(A; N As|B).
P(AN B) < P(A|B)
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6.14. Probability of compound events
(a) P(ANB) = P(A)P(B|A) = P(B)P(A|B)

(b) PIANBNC)=PANB) x P(C|IANB)
(c) PLANBNC) = P(A) x P(BJ]A) x P(C|AN B)

When we have many sets intersected in the conditioning part, we
often use “,” instead of “N”.

Example 6.15. Most people reason as follows to find the proba-
bility of getting two aces when two cards are selected at random
from an ordinary deck of cards:

(a) The probability of getting an ace on the first card is 4/52.

(b) Given that one ace is gone from the deck, the probability of
getting an ace on the second card is 3/51.

(¢) The desired probability is therefore

4 3

— X —.

52 5l
[21], p 243]

Question: What about the unconditional probability P(B)?
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Example 6.16. You know that roughly 5% of all used cars have
been flood-damaged and estimate that 80% of such cars will later
develop serious engine problems, whereas only 10% of used cars
that are not flood-damaged develop the same problems. Of course,
no used car dealer worth his salt would let you know whether your
car has been flood damaged, so you must resort to probability
calculations. What is the probability that your car will later run
into trouble?

6.17. Tree Diagram and Conditional Probability: Conditional
probabilities can be represented on a tree diagram as shown in
Figure [12]

P(AN B):P(A|B)P(B)

P(A) = P(A|B)P(B) + P(A|B)P(B¢)

P(A°|B) P(A° N B)=P(A°|B)P(B)

P(A N B€)=P(A|B°)P(B°)
P(A€|B€)

P(4° N B)=P(A°|B)P(BF)

Figure 12: Tree Diagram and Conditional Probabilities
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A more compact representation is shown in Figure [13]

P(A) = P(A|B)P(B) + P(A|B€)P(B°)

P(A¢) = P(A°|B)P(B) + P(A°|B€)P(B°)

Figure 13: Compact Diagram for Conditional Probabilities

Example 6.18. A simple digital communication channel called
binary symmetric channel (BSC) is shown in Figure[6.58 This
channel can be described as a channel that introduces random bit
errors with probability p.

Communication Channel

0
X Y
Channel Input : D » 1 Channel Output
1-p

Figure 14: Binary Symmetric Channel (BSC)

6.19. Total Probability Theorem: If a (finite or infinitely)
countable collection of events { By, Bs, ...} is a partition of €2, then

P(A) = ZP(A|Bz‘>P<Bi)- (8)

This is a formulaf? for computing the probability of an event
that can occur in different ways. Observe that it follows directly
from [5.21] and Definition [6.3|

26The tree diagram is useful for helping you understand the process. However, when the
number of possible cases is large (many B; for the partition), drawing the tree diagram may
be too time-consuming and therefore you should also learn how to apply the total probability
theorem directly without the help of the tree diagram.
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e Special case: P(A) = P(A|B)P(B) + P(A|B°)P(B°).
This gives exactly the same calculation as what we discussed

in Example [6.16|

Example 6.20. Continue from the “Diagnostic Tests” Example
and Example [6.7]
P(Tp)=P(TpN D)+ P(Tpn DY
=P (Tp|D)P(D)+ P(Tp|D) P (D).
For conciseness, we define
pa= P(D)
and
pre = P(Tp|D°) = P(Tp|D).
Then,
P(Tp) = (1 - pre)pp + pre(l — pp).

6.21. Bayes’ Theorem:
(a) Form 1:

P(B|A) = P(A\B)%.

(b) Form 2: If a (finite or infinitely) countable collection of events
{By, By, ...} is a partition of €, then
P(Br) _ P(A|By)P(By)

e Extremely useful for making inferences about phenomena that
cannot be observed directly.
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e Sometimes, these inferences are described as “reasoning about
causes when we observe effects”.

6.22. Summary:
(a) An easy but crucial property:

(b) Key setup: find a partition of the sample space

(c¢) Total probability theorem:

(d) Bayes’ theorem:

e Special case: When there are only two cases: B; and B,
we can think of them as B and B¢, respectively:

o P(A) =
o P(B|A) =

o P(B|A®) =
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Example 6.23. Suppose Q2 = {a,b, ¢, d, e}. Define four events
A=Ha,b,c}, B={a,b}, C={c,d}, and D = {e}.
Let
P({a})=P({b}) =02, and P ({c})=P({d}) =0.1.
Calculate the following probabilities:

(a) P({e})

(b) P(B) , P(C) :

Check: Observe that the collection {B,C, D} partitions 2.
Use the total probability theorem to find P(A).

(e) P(B[A)
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Example 6.24. Continue from the “Disease Testing” Examples

6.2, 6.7, and [6.20;

P(Tp) —  P(Tp)
(1 —pre)pD
(1 —=pre)pp +pre(l —pD)

pre = 1-0.99 = 0.01

0 /’t /
ol /- L L
[ P T 1-09=0.1
a 0.6’ / /
= 1/ A
g / P 1705 = 0.5
ol / /|
ol
v

o | | | | | | | | |
0 o1 02 03 04 05 06 07 08 09 1
Po

Figure 15: Probability P (D |Tp) that a person will have the disease given
that the test result is positive. The conditional probability is evaluated as a
function of Pp which tells how common the disease is. Thee values of test error
probability prg are shown.

Example 6.25. Medical Diagnostic: Because a new medical pro-
cedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The
probability that the test correctly identifies someone with the ill-
ness as positive is 0.99, and the probability that the test correctly
identifies someone without the illness as negative is 0.95. The in-
cidence of the illness in the general population is 0.0001. You take
the test, and the result is positive. What is the probability that
you have the illness? [15, Ex. 2-37]
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Example 6.26. Bayesian networks are used on the Web sites of
high-technology manufacturers to allow customers to quickly di-
agnose problems with products. An oversimplified example is pre-
sented here.

A printer manufacturer obtained the following probabilities from
a database of test results. Printer failures are associated with three
types of problems: hardware, software, and other (such as connec-
tors), with probabilities 0.1, 0.6, and 0.3, respectively. The prob-
ability of a printer failure given a hardware problem is 0.9, given
a software problem is 0.2, and given any other type of problem is
0.5. If a customer enters the manufacturers Web site to diagnose
a printer failure, what is the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software, or
other problem, respectively, and let F' denote a printer failure.

P(HNF)  P(F|H)P(H)

P(H|F) =

P(F)  P(F)
P(SNF)  P(F|S)P(S)

PO == TP
_ P(ONF)  P(F|O)P(O)

PO ==pm =~ P
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Example 6.27 (Slides). The Murder of Nicole Brown

6.28. Chain rule of conditional probability [9, p 58]:
P(ANB|C) = P(B|C)P(A|BNC(C).

6.29. In practice, here is how we use the total probability theorem and Bayes’
theorem:

Usually, we work with a system, which of course has input and output.
There can be many possibilities for inputs and there can be many possibilities
for output. Normally, for deterministic system, we may have a specification that
tells what would be the output given that a specific input is used. Intuitively,
we may think of this as a table of mapping between input and output. For
system with random component(s), when a specific input is used, the output is
not unique. This mean we needs conditional probability to describe the output
(given an input). Of course, this conditional probability can be different for
different inputs.

We will assume that there are many cases that the input can happen. The
event that the ¢th case happens is denoted by B;. We assume that we consider
all possible cases. Therefore, the union of these B; will automatically be €. If
we also define the cases so that they do not overlap, then the B; partitions 2.

Similarly, there are many cases that the output can happen. The event that
the jth case happens is depenoted by A;. We assume that the A; also partitions
Q.

In this way, the system itself can be described by the conditional proba-
bilities of the form P(A;|B;). This replace the table mentioned above as the
specification of the system. Note that even when this information is not avail-
able, we can still obtain an approximation of the conditional probability by
repeating trials of inputting B; in to the system to find the relative frequency
of the output A;.

Now, when the system is used in actual situation. Different input cases can
happen with different probabilities. These are described by the prior probabil-
ities P(B;). Combining this with the conditional probabilities P(A;|B;) above,
we can use the total probability theorem to find the probability of occurrence for
output and, even more importantly, for someone who cannot directly observe
the input, Bayes’ theorem can be used to infer the value (or the probability) of
the input from the observed output of the system.

In particular, total probability theorem deals with the calculation of the
output probabilities P(A;):

P(A) =) P(A;NB) =) P(A;|B;) P(By),

Bayes’ theorem calculates the probability that By was the input event when the
observer can only observe the output of the system and the observed value of
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the output is A;:

_ P(ANBy) _ P(A|By) P(By)
P (BylAj) = P(4;) S P(A;|B)P(B)

i

Example 6.30. In the early 1990s, a leading Swedish tabloid tried to create an
uproar with the headline “Your ticket is thrown away!”. This was in reference to
the popular Swedish TV show “Bingolotto” where people bought lottery tickets
and mailed them to the show. The host then, in live broadcast, drew one ticket
from a large mailbag and announced a winner. Some observant reporter noticed
that the bag contained only a small fraction of the hundreds of thousands tickets
that were mailed. Thus the conclusion: Your ticket has most likely been thrown
away!

Let us solve this quickly. Just to have some numbers, let us say that there
are a total of N = 100,000 tickets and that n = 1,000 of them are chosen at
random to be in the final drawing. If the drawing was from all tickets, your
chance to win would be 1/N = 1/100,000. The way it is actually done, you
need to both survive the first drawing to get your ticket into the bag and then
get your ticket drawn from the bag. The probability to get your entry into
the bag is n/N = 1,000/100,000. The conditional probability to be drawn
from the bag, given that your entry is in it, is 1/n = 1/1,000. Multiply to get
1/N =1/100,000 once more. There were no riots in the streets. [I7, p 22]

Example 6.31. Suppose your professor tells the class that there will be a
surprise quiz next week. On one day, Monday-Friday, you will be told in the
morning that a quiz is to be given on that day. You quickly realize that the
quiz will not be given on Friday; if it was, it would not be a surprise because it
is the last possible day to get the quiz. Thus, Friday is ruled out, which leaves
Monday-Thursday. But then Thursday is impossible also, now having become
the last possible day to get the quiz. Thursday is ruled out, but then Wednesday
becomes impossible, then Tuesday, then Monday, and you conclude: There is
no such thing as a surprise quiz! But the professor decides to give the quiz on
Tuesday, and come Tuesday morning, you are surprised indeed.

This problem, which is often also formulated in terms of surprise fire drills
or surprise executions, is known by many names, for example, the “hangman’s
paradox” or by serious philosophers as the “prediction paradox.” To resolve
it, let’s treat it as a probability problem. Suppose that the day of the quiz
is chosen randomly among the five days of the week. Now start a new school
week. What is the probability that you get the test on Monday? Obviously
1/5 because this is the probability that Monday is chosen. If the test was not
given on Monday. what is the probability that it is given on Tuesday? The
probability that Tuesday is chosen to start with is 1/5, but we are now asking
for the conditional probability that the test is given on Tuesday, given that it
was not given on Monday. As there are now four days left, this conditional
probability is 1/4. Similarly, the conditional probabilities that the test is given
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on Wednesday, Thursday, and Friday conditioned on that it has not been given
thus far are 1/3, 1/2, and 1, respectively.

We could define the “surprise index” each day as the probability that the
test is not given. On Monday, the surprise index is therefore 0.8, on Tuesday it
has gone down to 0.75, and it continues to go down as the week proceeds with
no test given. On Friday, the surprise index is 0, indicating absolute certainty
that the test will be given that day. Thus, it is possible to give a surprise test
but not in a way so that you are equally surprised each day, and it is never
possible to give it so that you are surprised on Friday. [17, p 23-24]

Example 6.32. Today Bayesian analysis is widely employed throughout sci-
ence and industry. For instance, models employed to determine car insurance
rates include a mathematical function describing, per unit of driving time, your
personal probability of having zero, one, or more accidents. Consider, for our
purposes, a simplified model that places everyone in one of two categories: high
risk, which includes drivers who average at least one accident each year, and
low risk, which includes drivers who average less than one.

If, when you apply for insurance, you have a driving record that stretches
back twenty years without an accident or one that goes back twenty years with
thirty-seven accidents, the insurance company can be pretty sure which category
to place you in. But if you are a new driver, should you be classified as low risk
(a kid who obeys the speed limit and volunteers to be the designated driver)
or high risk (a kid who races down Main Street swigging from a half-empty $2
bottle of Boone’s Farm apple wine)?

Since the company has no data on you, it might assign you an equal prior
probability of being in either group, or it might use what it knows about the
general population of new drivers and start you off by guessing that the chances
you are a high risk are, say, 1 in 3. In that case the company would model you as
a hybrid-one-third high risk and two-thirds low risk-and charge you one-third
the price it charges high-risk drivers plus two-thirds the price it charges low-risk
drivers.

Then, after a year of observation, the company can employ the new datum
to reevaluate its model, adjust the one-third and two-third proportions it pre-
viously assigned, and recalculate what it ought to charge. If you have had no
accidents, the proportion of low risk and low price it assigns you will increase;
if you have had two accidents, it will decrease. The precise size of the adjust-
ment is given by Bayes’s theory. In the same manner the insurance company
can periodically adjust its assessments in later years to reflect the fact that you
were accident-free or that you twice had an accident while driving the wrong
way down a one-way street, holding a cell phone with your left hand and a
doughnut with your right. That is why insurance companies can give out “good
driver” discounts: the absence of accidents elevates the posterior probability
that a driver belongs in a low-risk group. [14, p 111-112]
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6.2 Event-based Independence

Plenty of random things happen in the world all the time, most of
which have nothing to do with one another. If you toss a coin and
I roll a dice, the probability that you get heads is 1/2 regardless of
the outcome of my dice. Events that are unrelated to each other
in this way are called independent.

Definition 6.33. Two events A, B are called (statistically@
independent if

P(ANnB)=P(A)P(B) 9)
e Notation: Al B
e Read “A and B are independent” or “A is independent of B”
o We call @ the multiplication rule for probabilities.

e If two events are not independent, they are dependent. In-
tuitively, if two events are dependent, the probability of one
changes with the knowledge of whether the other has oc-
curred.

6.34. Intuition: Again, here is how you should think about inde-
pendent events: “If one event has occurred, the probability of the
other does not change.”

P(A|B) = P(A) and P(B|A) = P(B). (10)

In other words, “the unconditional and the conditional probabili-
ties are the same”. We can almost use as the definitions for
independence. This is what we mentioned in [6.8] However, we use
(9) instead because it (1) also works with events whose probabili-
ties are zero and (2) also has clear symmetry in the expression (so
that A_lL B and B _l A can clearly be seen as the same). In fact,
in [6.37], we show how (L0]) can be used to define independence with
extra condition that deals with the case when zero probability is
involved.

27Sometimes our definition for independence above does not agree with the everyday-
language use of the word “independence”. Hence, many authors use the term “statistically
independence” to distinguish it from other definitions.
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Example 6.35. |25, Ex. 5.4] Which of the following pairs of events
are independent?

(a) The card is a club, and the card is black.
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Figure 16: A Deck of Cards

(b) The card is a king, and the card is black.

6.36. An event with probability 0 or 1 is independent of any event
(including itself).

e In particular, () and € are independent of any events.

e One can also show that an event A is independent of itself if
and only if P (A) is 0 or 1.

6.37. Now that we have [6.36, we can now extend the “practival
definition” from to include events with zero probabilities:
Two events A, B with positive probabilities are independent if
and only if P(B|A) = P (B), which is equivalent to P (A|B) =
P (A).
When A and/or B has zero probability, A and B are automat-
ically independent.
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6.38. When A and B have nonzero probabilities, the following
statements are equivalent:

1) Al B

2) P(ANB) = P(A)P(B)

3) P(A|B) = P(A)

4) P(B|A) = P(B)

6.39. The following four statements are equivalent:

AL B, Al B, A°1 B, A°l B

Example 6.40. If P(A|B) = 0.4, P(B) = 0.8, and P(A) = 0.5,
are the events A and B independent? [15]

6.41. Keep in mind that independent and disjoint are not
synonyms. In some contexts these words can have similar mean-
ings, but this is not the case in probability.

e If two events cannot occur at the same time (they are disjoint),
are they independent? At first you might think so. After all,
they have nothing to do with each other, right? Wrong! They
have a lot to do with each other. If one has occurred, we know
for certain that the other cannot occur. [17, p 12]

e To check whether A and B are disjoint, we only need to look
at the sets themselves and see whether they have shared out-
come(s). This can be answered without knowing probabilities.

To check whether A and B are independent, we need to com-
pute the probabilities P(A), P(B), and P(AN B).
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e Addition vs. multiplication:

(a) If events A and B are disjoint, we calculate the probability
of their union AU B by adding the probabilities of A and
B.

(b) For independent events A and B, we calculate the proba-
bility of their intersection AN B by multiplying the prob-
abilities of A and B.

e The two statements A 1 B and A _Il B can occur simultane-
ously only when P(A) =0 and/or P(B) = 0.

o Reverse is not true in general.

Example 6.42. Experiment of flipping a fair coin twice. Q =
{HH,HT,TH,TT}. Define event A to be the event that the first
flip gives a H; that is A = {HH, HT}. Event B is the event that

the second flip gives a H; that is B = {HH,TH}. Note that even
though the events A and B are not disjoint, they are independent.

Example 6.43 (Slides). Prosecutor’s fallacy: In 1999, a British
jury convicted Sally Clark of murdering two of her children who had died sud-
denly at the ages of 11 and 8 weeks, respectively. A pediatrician called in as
an expert witness claimed that the chance of having two cases of sudden in-
fant death syndrome (SIDS), or “cot deaths,” in the same family was 1 in 73
million. There was no physical or other evidence of murder, nor was there a
motive. Most likely, the jury was so impressed with the seemingly astronomical
odds against the incidents that they convicted. But where did the number come
from? Data suggested that a baby born into a family similar to the Clarks faced

83



a 1 in 8,500 chance of dying a cot death. Two cot deaths in the same family, it
was argued, therefore had a probability of (1/8,500)? which is roughly equal to
1/73,000.000.

Did you spot the error? The computation assumes that successive cot deaths
in the same family are independent events. This assumption is clearly ques-
tionable, and even a person without any medical expertise might suspect that
genetic factors play a role. Indeed, it has been estimated that if there is one cot
death, the next child faces a much larger risk, perhaps around 1/100. To find
the probability of having two cot deaths in the same family, we should thus use
conditional probabilities and arrive at the computation 1/8,500 x 1/100, which
equals 1/850,000. Now, this is still a small number and might not have made
the jurors judge differently. But what does the probability 1/850,000 have to do
with Sallys guilt? Nothing! When her first child died, it was certified to have
been from natural causes and there was no suspicion of foul play. The probabil-
ity that it would happen again without foul play was 1/100, and if that number
had been presented to the jury, Sally would not have had to spend three years in
jail before the verdict was finally overturned and the expert witness (certainly
no expert in probability) found guilty of “serious professional misconduct.”

You may still ask the question what the probability 1/100 has to do with
Sallys guilt. Is this the probability that she is innocent? Not at all. That would
mean that 99% of all mothers who experience two cot deaths are murderers!
The number 1/100 is simply the probability of a second cot death, which only
means that among all families who experience one cot death, about 1% will
suffer through another. If probability arguments are used in court cases, it is
very important that all involved parties understand some basic probability. In
Sallys case, nobody did.

References: [14], 118-119] and [17, 22-23].

Definition 6.44. Three events A;, Ay, A3 are independent if and
only if

P (AN Ay) = P (A) P (A)
P (A NAy) = P(A) P (A4)
P (Ay N Ay) = P (Ay) P (Ay)
P (AN Ay As) = P (A)) P (Ay) P (Ay)

Remarks:

(a) When the first three equations hold, we say that the three
events are pairwise independent.

(b) We may use the term “mutually independence” to further
emphasize that we have “independence” instead of “pairwise
independence”.
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Definition 6.45. The events Ay, Ao, ..., A, are independent if
and only if for any subcollection A;,, A;,, ..., 4;,,

e Note that part of the requirement is that
P(AlﬂAgﬂ"'ﬁAn):P(Al) XP(AQ) X oeee XP(An)

Therefore, if someone tells us that the events A, Ay, ..., A,
are independent, then one of the properties that we can con-
clude is that

P(AlﬂAgﬂmAn)ZP(A1>><P(A2)XXP(An)

e Equivalently, this is the same as the requirement that

P4 ] =][PA) VJC[n] and |J| > 2

jeJ Jj€J

e Note that the case when j = 1 automatically holds. The case
when 7 = 0 can be regarded as the () event case, which is also
trivially true.

6.46. Four events A, B,C, D are pairwise independent if and
only if they satisfy the following six conditions:

P(ANB) = P(A)P(B),
P(ANC) = P(A)P(C),
P(AN D) = P(A)P(D),
P(BNC) = P(B)P(C),
P(BN D) = P(B)P(D), and
P(C N D)= P(C)P(D).

They are independent if and only if they are pairwise independent
(satisfy the six conditions above) and also satisfy the following five
more conditions:

P(BNC N D)= P(B)P(C)P(D),
P(ANCN D) = P(A)P(C)P(D),
P(AN BN D)= P(A)P(B)P(D),
P(ANBNC) = P(A)P(B)P(C), and

P(ANBNCND)=P(A)P(B)P(C)P(D)
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Example 6.47. Suppose five events A, B, C, D, E are independent
with

(a) Can they be (mutually) disjoint?

(b) Find P(AU B)

(¢) Find P((AUB)NC)

(d) Find P (AN C N D)

(e) Find P(AN B|C)
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6.3 Bernoulli Trials
Example 6.48. Consider the following random experiments

(a) Flip a coin 10 times. We are interested in the number of heads
obtained.

(b) Of all bits transmitted through a digital transmission channel,
10% are received in error. We are interested in the number of
bits in error in the next five bits transmitted.

(¢) A multiple-choice test contains 10 questions, each with four
choices, and you guess at each question. We are interested in
the number of questions answered correctly.

These examples illustrate that a general probability model that
includes these experiments as particular cases would be very useful.

Example 6.49. Each of the random experiments in Example |6.48
can be thought of as consisting of a series of repeated, random
trials. In all cases, we are interested in the number of trials that
meet a specified criterion. The outcome from each trial either
meets the criterion or it does not; consequently, each trial can be
summarized as resulting in either a success or a failure.

Definition 6.50. A Bernoull: trial involves performing an ex-
periment once and noting whether a particular event A occurs.
The outcome of the Bernoulli trial is said to be

(a) a “success” if A occurs and
(b) a “failure” otherwise.

We may view the outcome of a single Bernoulli trial as the out-
come of a toss of an unfair coin for which the probability of heads
(success) is p = P(A) and the probability of tails (failure) is 1 — p.

e Only one important parameter:

p = success probability (probability of “success”)
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e The labeling (“success” and “failure”) is not meant to be lit-
eral and sometimes has nothing to do with the everyday mean-

ing of the words. We can just as well use “H and T”, “A and
B”, or “1 and 0.

Example 6.51. Examples of Bernoulli trials: Flipping a coin,
deciding to vote for candidate A or candidate B, giving birth to
a boy or girl, buying or not buying a product, being cured or not
being cured, even dying or living are examples of Bernoulli trials.

e Actions that have multiple outcomes can also be modeled as
Bernoulli trials if the question you are asking can be phrased
in a way that has a yes or no answer, such as “Did the dice
land on the number 47”.

Definition 6.52. (Independent) Bernoulli Trials = a Bernoulli
trial is repeated many times.

(a) It is usually?] assumed that the trials are independent. This
implies that the outcome from one trial has no effect on the
outcome to be obtained from any other trial.

(b) Furthermore, it is often reasonable to assume that the prob-
ability of a success in each trial is constant.

An outcome of the complete experiment is a sequence of suc-
cesses and failures which can be denoted by a sequence of ones
and zeroes.

Example 6.53. Toss unfair coin n times.
e The overall sample space is Q = {H,T}".

o There are 2" elements. Each has the form (wy,wo, ..., wy,)
where w; = H or T.

e The n tosses are independent. Therefore,

P({HHHTT}) =

28Unless stated otherwise or having enough evidence against, assume the trials are inde-
pendent.

88



Example 6.54. What is the probability of two failures and three
successes in five Bernoulli trials with success probability p.

Let’s represent success and failure by 1 and 0, respectively. The
outcomes with three successes in five trials are listed below:

Outcome Corresponding probability
11100
11010
11001
10110
10101
10011
01110
01101
01011
00111

We note that the probability of each outcome is a product of
five probabilities, each related to one Bernoulli trial. In outcomes
with three successes, three of the probabilities are p and the other
two are 1 — p. Therefore, each outcome with three successes has
probability (1 — p)%p®.

There are 10 of them. Hence, the total probability is 10(1—p)?p?

6.55. The probability of exactly k successes in n bernoulli trials

“ ()=t

Example 6.56. Consider a particular disease with prevalence P(D) =
10~%: when a person is selected randomly from the general popu-
lation, the probability that (s)he has this disease is 107* or 1-in-n
where n = 10%.

Suppose we randomly select n = 10* people from the general
population. What is the chance that we find at least one person
with this disease?
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Example 6.57. At least one occurrence of a 1-in-n-chance event
in n repeated trials:
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Figure 17: Number of occurrences of 1-in-n-chance event in n repeated Bernoulli
trials

Example 6.58. Digital communication over unreliable chan-
nels: Consider a digital communication system through the bi-
nary symmetric channel (BSC) discussed in Example [6.18] We
repeat its compact description here.

Communication Channel

50
X Y
Channel Input 1 D 5 1 Channel Output
1-p

90




Again this channel can be described as a channel that introduces
random bit errors with probability p. This p is called the crossover
probability.

A crude digital communication system would put binary infor-
mation into the channel directly; the receiver then takes whatever
value that shows up at the channel output as what the sender
transmitted. Such communication system would directly suffer bit
error probability of p.

In situation where this error rate is not acceptable, error control
techniques are introduced to reduce the error rate in the delivered
information.

One method of reducing the error rate is to use error-correcting
codes:

A simple error-correcting code is the repetition code. Exam-
ple of such code is described below:

e At the transmitter, the “encoder” box performs the following
task:
o To send a 1, it will send 11111 through the channel.
o To send a 0, it will send 00000 through the channel.

e When the five bits pass through the channel, it may be cor-
rupted. Assume that the channel is binary symmetric and
that it acts on each of the bit independently.

e At the receiver, we (or more specifically, the decoder box) get
5 bits, but some of the bits may be changed by the channel.
To determine what was sent from the transmitter, the receiver
apply the magjority rule: Among the 5 received bits,

o if #1 > #0, then it claims that “1” was transmitted,
o if #0 > #1, then it claims that “0” was transmitted.
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Two ways to calculate the probability of error:

(a) (transmission) error occurs if and only if the number of bits
in error are > 3.

(b) (transmission) error occurs if and only if the number of bits
not in error are < 2.
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Figure 18: Overall bit error probability for a simple system that uses repeti-
tion code at the transmitter (repeat each bit n times) and majority vote at
the receiver. The channel is assumed to be binary symmetric with bit error
probability p.

Exercise 6.59 (F2011). Kakashi and Gai are eternal rivals. Kakashi
is a little stronger than Gai and hence for each time that they fight,
the probability that Kakashi wins is 0.55. In a competition, they
fight n times (where n is odd). Assume that the results of the fights
are independent. The one who wins more will win the competition.

Suppose n = 3, what is the probability that Kakashi wins the
competition.
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Example 6.60. A stream of bits is transmitted over a binary
symmetric channel with crossover probability p.

(a) Consider the first seven bits.

(i) What is the probability that exactly four bits are received
in error?

(ii) What is the probability that at least one bit is received
correctly?

(b) What is the probability that the first error occurs at the fifth
bit?

(c) What is the probability that the first error occurs at the kth
bit?

(d) What is the probability that the first error occurs before or
at the kth bit?
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